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ABSTRACT
A spatially varying Gaussian mixture model (SVGMM) prior
is employed to ensure the preservation of region boundaries
in penalized likelihood tomographic image reconstruction.
Spatially varying Gaussian mixture models are characterized
by the dependence of their mixing proportions on location
(contextual mixing proportions) and they have been successfully
used in image segmentation. The proposed model imposes
a Student’s t-distribution on the local differences of the con-
textual mixing proportions and its parameters are automatically
estimated by a variational Expectation-Maximization (EM)
algorithm. The tomographic reconstruction algorithm is an
iterative process consisting of alternating between an opti-
mization of the SVGMM parameters and an optimization for
updating the unknown image using also the EM algorithm.
Numerical experiments on various photon limited image sce-
narios show that the proposed model is more accurate than
the widely used Gibbs prior.

Index Terms— Emission tomography, iterative image re-
construction, expectation-maximization (EM) algorithm, spa-
tially varying Gaussian mixture models (GMM), Student’s t-
distribution, edge preservation.

1. INTRODUCTION

Maximum a posteriori (MAP) or penalized maximum like-
lihood tomographic reconstruction methods have gained in-
creasing acceptance in the last three decades [1]. These meth-
ods impose a prior probability density function (pdf) on the
image to be reconstructed which usually aims to encourage
the image to be smooth so as to suppress the effect of noise.
This assumption is based on the knowledge that, because of
its blurring effect, the system (projection) matrix suppresses
image detail. Therefore any such detail present in the recon-
struction is more probably to have arisen from noise.

A common model for the prior is the Markov random field
(MRF) expressed by the Gibbs distribution and many meth-
ods were proposed in that framework, differing on the choice
of the potential function [2, 3, 4]. The total variation has also
been used as a smoothing prior for suppressing unstable os-
cillations around the image edges [5, 6].

The notion of clustered intensity histogram was intro-
duced in a penalized likelihood method in [7], where the
unknown image is modeled by a mixture of Gamma dis-
tributions enforcing positivity. A monotonically decreasing
surrogate objective function resulting in a closed form expres-
sion is proposed in [8] while the median root prior was also

used to impose spatial smoothness and stabilize the solution
[9]. Also, a nonlocal prior was designed [10] where the defi-
nition of a pixel’s neighborhood is broadened. Finally, image
priors based on Gaussian mixtures whose parameters are es-
timated using variational-Bayes methodology were proposed
for image segmentation and restoration [11] and tomographic
reconstruction [12].

In this paper, we propose a MAP tomographic reconstruc-
tion algorithm based on a spatially varying Gaussian mixture
model (SVGMM) image prior [13], which is appropriate for
both emission and transmission tomography. Contrary to the
Gibbs prior, which is determined by a parameter that has to
be fixed in advance, in spatially varying mixtures, the model
parameters are automatically estimated from the image. This
yields location-dependent smoothing which cannot be mod-
eled by the Gibbs distribution. Therefore, the advantage of
this type of model is twofold. At first, edges are better pre-
served than in the standard Gibbs prior due to their implicit
modeling and the clustering assumption increases the inter-
action between similar in intensity pixels. In the related lit-
erature, many spatially varying Gaussian mixtures have been
proposed and could be applied as priors in tomography [13,
14, 15, 16]. For the proof of concept, we have applied the
model proposed in [13] because it models image edges as a
continuous line process whose parameters provide a continu-
ous (analog) edge map.

The image reconstruction process integrates this prior in
a standard MAP-EM iterative algorithm, where the SVGMM
parameters and the unknown image are estimated in an alter-
nating scheme. Numerical experiments using photon-limited
images reveal the supremacy of the method with respect to the
widely used Gibbs prior.

2. THE IMAGE MODEL

Let f be the vectorized form of the image to be reconstructed.
Let also g be the observed projections (sinogram), also in vec-
torized form and let H represent the projection matrix. Pe-
nalized likelihood models rely on the stochastic interpreta-
tion of Tikhonov regularization by introducing an appropri-
ate prior p(f) for the image f. The likelihood function p(g|f)
is related to the posterior probability p(f|g) by the Bayes rule
p(f|g) ∝ p(g|f)p(f).

In tomography, the likelihood p(g|f) is a Poisson distribu-



tion assuming independence between counts

p(g|f) =
N

∏
n=1

([Hf]n)
gn exp(−[Hf]n)

gn!
, (1)

where N is the number of projection measures, gn is the nth

component of g and [Hf]n is the nth component of vector Hf.
MAP estimates for the image f may be obtained by maximiz-
ing the log-posterior:

log p(f|g) = log p(g|f) + log p(f) (2)

with respect to f.
Based on the hypothesis that the image to be reconstructed

should be smooth, the general assumption is that p(f) repre-
sents a Markov random field represented by a Gibbs distri-
bution and its variants. Here, we propose to model the im-
age by a spatially varying Gaussian mixture model (SVGMM)
which has shown to be very effective for image segmentation
[13]. It differs from the standard GMM [17] in the definition of
the mixing proportions. More precisely, in the SVGMM, each
pixel fn, n = 1, ..., N has a distinct vector of mixing propor-
tions denoted by πn

j , j = 1, ..., J, with J being the number of
Gaussian kernels. We call these parameters contextual mixing
proportions to distinguish them from the mixing proportions of
a standard GMM. Hence, the probability of a distinct pixel is
expressed by:

p(fn; π, µ, Σ) =
J

∑
j=1

πn
j N (fn; µj, Σj) (3)

where 0 ≤ πn
j ≤ 1, ∑J

j=1 πn
j = 1 for j = 1, 2, ..., J and

n = 1, 2, ..., N, N (·) is the Gaussian distribution, µj are the
Gaussian means and Σj are the Gaussian covariance matrices.
Hence, the probability of the image is computed by assuming
pixel independence, which is common in modeling images by
mixtures of distributions:

p(f) =
N

∏
n=1

J

∑
j=1

πn
j N (fn; µj, Σj) (4)

Apart from enforcing pixel clustering, this prior preserves
the edges in the image because the local differences of the con-
textual mixing proportions are considered to follow a univari-
ate Student’s t-distribution. Following the definition of the
Student’s t-distribution [18], a two step generative model pro-
vides the clique potential functions:

πn
j − πk

j ∼ N (0, β2
jd/unk

j ), (5)

unk
j ∼ G(νjd/2, νjd/2), ∀n, j, d, k ∈ γd(n), (6)

where G(·) is the Gamma distribution, γd(n) is the set of
neighbors of the pixel indexed by n, with respect to the dth ad-
jacency type (e.g. horizontal, vertical, diagonal). This model
first draws unk

j from a Gamma distribution parameterized by
νjd and then considers that the local differences of the mixing
proportions follow a Gaussian distribution with zero mean
and standard deviation β2

jd/unk
j .

This generative model, whose graphical representation is
shown in Fig. 1, allows clustering of the image pixels around

the Gaussian means and imposes edge preservation through
the Student’s t-distribution of the mixing proportions. More
specifically, as unk

j → +∞ the distribution tightens around
zero, and enforces neighboring contextual mixing proportions to
be smooth. On the other hand, when unk

j → 0 the distribution
tends to be uninformative, and enforces no smoothness. Con-
sequently, the variables unk

j provide a very detailed descrip-
tion of the boundary structure of the image. Estimation of
model parameters through a standard MAP-EM approach is
intractable due the comp[lexity of the model and the suitable
framework is provided by variational inference which yields
estimates for all of the parameters of the model [13].
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Fig. 1. Graphical model for the edge preserving model. Su-
perscripts and subscripts n, k ∈ [1, N] denote pixel index,
subscript j ∈ [1, K] denotes segment index, d ∈ [1, D] de-
scribes the neighborhood direction type. Γ equals the maxi-
mum number of possible neighbors.

The maximization of (2) with respect to f may be accom-
plished by the maximum a posteriori expectation-maximization
(MAP-EM) algorithm that provides the update for the inten-
sity of the jth pixel of the unknown image [1, 2]:

f̂(t+1)
j =

f̂(t)j

∑i′ Hi′ j +
∂ log p(f)

∂f

∣∣∣
f=f̂(t)j

∑
i

Hij
gi

∑k Hik f̂(t)k

. (7)

This one-step-late EM (OSL-EM) algorithm evaluates the
derivative term in (7) using the previous image estimate.
Other methods, such as the conjugate gradient descent may
be employed but they also reach a local maximum of (2) as
the mixture model is not convex with respect to f.

The overall algorithm consists of an alternating optimiza-
tion scheme. One step consists in estimating the parameters of
the SVGMM using the EM algorithm [13] with the image f be-
ing fixed. Having the SVGMM parameters fixed from the first
step, the second step consists in estimating f by the OSL-EM
algorithm update (7). Algorithm 1 summarizes the different
steps. The algorithm stops when the estimated image does
not change significantly or when a predefined number of iter-
ations is reached, which is common in this type of alternating
optimization methods [7, 9, 10].



Algorithm 1 MAP-EM tomographic reconstruction using a
SVGMM prior

input: A sinogram g, a threshold ε, MAXiterations.
output: The unknown image f.
Initialize f by an image with constant intensity.
counter=0.
while ||f(t+1) − f(t)|| > ε and counter ≤MAXiterations do

Estimate the parameters {µj, Σj, πn
j , β jd, νjd, unk

j }, for
n, k ∈ [1, N], j ∈ [1, K] and d ∈ [1, D] of the SVGMM
in (4) using the EM algorithm as described in [13].
Estimate the image f using the update in (7).
counter++

end while

3. EXPERIMENTAL RESULTS

The performance of the proposed tomographic reconstruction
model was examined using the well known Shepp-Logan
phantom. We have set J = 5 clusters for the mixture model
taking into account the segments of the phantom. The algo-
rithm stopped when ε = 10−3 or when 60 iterations were
reached. The method was evaluated with respect to the
standard maximum likelihood EM (ML-EM), the established
MAP-EM algorithm with a Gibbs prior [2] and a version of the
proposed method using a standard GMM as prior. A number
of performance indices were used. To this end, degraded im-
ages were generated from the initial image by modifying the
total photon counts. More specifically, as the initial phantom
has approximatively 75 counts per pixel, images having 75,
55, 35 and 15 photons/pixel on average were generated to
degrade the signal quality.

At first, the algorithms were put in test in terms of the
improvement in signal to noise ratio (ISNR) with respect to
a reconstruction obtained by a simple filtered back-projection
using the Ram-Lak filter:

ISNR = 10 log10
||f− fFBP||2

||f− f̂||2
(8)

where f is the ground truth image, fFBP is the reconstructed
image by filtered back-projection and f̂ is the reconstructed
image using the proposed image model. Practically, ISNR
measures the improvement (or deterioration) in the quality
of the reconstruction of the proposed method with respect to
the reconstruction obtained by filtered back-projection. More-
over, the consistency of the method was measured by the bias
(BIAS) and the variance (VAR) of the reconstructed images:

BIAS = ||f− f̄||, VAR =
M

∑
k=1
||f̄− f̂k||2, (9)

with

f̄ =
1
M

M

∑
k=1

f̂k, (10)

where f is the ground truth image and f̂k, for k = 1, ..., M, is the
kth reconstructed image, obtained from M = 40 different real-
izations for each noise level. Finally, we also included in the
evaluation the structural similarity index (SSIM) [19], which

represents the visual distortion between the ground truth and
the reconstructed image:

SSIM(f, f̂) =
(2µfµf̂ + C1)(2σff̂ + C2)

(µ2
f + µ2

f̂
+ C1)(σ

2
f + σ2

f̂
+ C2)

, (11)

where µf and µf̂ denote the mean intensity of the ground truth
and the estimated image, σf and σf̂ are the standard deviations
of the two images, σff̂ is the covariance of f and f̂ and C1 and
C2 are constants added to avoid instability. The above statis-
tics are calculated locally on equally sized windows centered
at each image pixel and the average values over all pixels are
reported here.

The statistical comparisons for these indices are shown in
Fig. 2 and Fig. 3. For the ISNR and the SSIM (Fig. 2), their
mean values over the M = 40 experiments are shown. All
of the obtained ISNR and SSIM values are very close to these
mean values as their standard deviations over the whole set
of experiments are very small. For the bias and variance, the
values obtained by (9) are shown. As it can be observed

(a)

(b)

Fig. 2. (a) ISNR and (b) structural similarity of the compared
methods (mean values over 40 experiments).

in these figures, as the noise decreases (the number of pho-
ton counts per pixel increases) the ISNR becomes larger with



(a)

(b)

Fig. 3. (a) Bias and (b) variance of the compared methods.

the SVGMM method providing better results. Similar numer-
ical results are obtained for the peak SNR (PSNR). The same
stands for the bias which decreases when the noise decreases
as we have more pure data and the obtained mean estimates
are closer to the ground truth as the photon counts increase.
Furthermore, the variance of the estimates is relatively consis-
tent for the SVGMM which is due to the clustering effect of the
prior (notice this effect also for the simple GMM). In all these
indices, the SVGMM prior clearly shows a better performance
with respect to the other priors.

In general, the image provided by the SVGMM prior is
sharper. This is also confirmed by a visual inspection through
scaling (zooming) of the estimated images in Fig. 4. Finally,
to highlight the accuracy of the proposed model, the esti-
mated image intensities along a scan line are shown in Fig.
5 for the Gibbs and the SVGMM priors, where it can be seen
the SVGMM model provides values which are closer to the
ground truth. The execution of the algorithm takes on aver-
age 4 minutes on a standard PC using MATLAB without any
optimization.

(a) (b) (c)

Fig. 4. (a) Original image and a zoomed region inside it. The
zoomed region reconstructed using (b) the Gibbs prior and (c)
the SVGMM prior with 75 counts per pixel.

Fig. 5. Comparison of horizontal profiles between the origi-
nal and the reconstructed images provided by the proposed
SVGMM and the Gibbs prior 75 counts per pixel.

4. CONCLUSION

In this paper, an iterative reconstruction algorithm based on a
spatially varying Gaussian mixture model was proposed. The
main contribution of this work is the effectiveness and robust-
ness of the prior which provides smooth reconstructed images
while preserving the structure of image edges. An important
aspect of this prior is that all of its parameters are automat-
ically estimated from the image data through the EM algo-
rithm. Finally, methods for further improving the accuracy
of the method by replacing the one-step-late EM algorithm
for updating the image using eq. (7) by another optimization
method is an issue of current research.
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